
18CS33

Third Semester B.E. Degree Examination, July/August 2021 Analog and Digital Electronics

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. With a neat sketch, explain the construction and working of Light Emitting Diode (LED).
(06 Marks)
b. For the given circuit in Fig.Q.1(b) Si transistor with $\beta=50$, calculate the I_{B}, I_{C} and $V_{\text {CE }}$. Draw the DC load line and determine the operating point.
(06 Marks)

Fig.Q.1(b)
c. With a neat circuit diagram and waveform, explain the working of Astable multivibrator.

2 a. What is a filter? Compare between active filters and passive filters.
(06 Marks)
b. With a neat diagram and waveform, explain working of relaxation oscillator.
(08 Marks)
c. Explain the different components of regulated power supply.
(06 Marks)
3 a. Simply the given expression using K-map
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,4,8,9,10)+\sum \mathrm{d}(2,11)$
(08 Marks)
b. Using a prime-implicant charts, find all minimum SOP solution using Quine-Mc-Clusky method for $\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(1,3,4,5,6,7,10,12,13)+\sum \mathrm{d}(2,9,15)$.
(12 Marks)
4 a. Find all prime implicants of the following given function and find all minimum solutions using Petrick method.
$F(A, B, C, D)=\sum m(7,12,14,15)+\sum \mathrm{d}(1,3,5,8,10,11,13)$
(12 Marks)
b. Using the map-entered variable, use 4 variable maps to find the minimum SOP expression for the function
$\mathrm{G}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F})=\mathrm{m}_{0}+\mathrm{m}_{2}+\mathrm{m}_{3}+E m_{5}+E m_{7}+E m_{9}+\mathrm{m}_{11}+\mathrm{m}_{15}+\mathrm{d}(1,10,13)$
(08 Marks)
5 a. Write the truth table for the AND-OR functions for four valued simulations. (06 Marks)
b. With a suitable assumption, explain the timing diagram of an AND-OR circuit.
c. What is hazard? Explain the different type of hazard with an example.

6 a. Explain multiplexer with an example. Realize the $8: 1$ multiplexer using $2: 1$ and $4: 1$ multiplexer.
b. With a neat diagram, explain the 3 to 8 decoder.
c. With a neat sketch, explain the structure of PLA.

7 a. Explain the structure of an VHDL module. Write a VHDL code for $4: 1$ multiplexer.
b. Write a program for the implementation of full-Adder using VHDL.
c. With a neat diagram, explain switch debouncing circuit using an S-R latch.

8 a. What is a flip flop? Explain the gated D-latch, with a neat diagram.
(06 Marks)
b. Explain the Master-Slave J-K flip-flop with a neat diagram, using NAND gates.
c. Explain T-flip flop with a diagram.

9 a. What is Register? With a neat diagram, explain the register with data, load, clear and clock inputs.
(08 Marks)
b. With a neat sketch, explain the working of Serial In Serial Out (SISO) Right shift register.
c. What are the difference between the synchronous and Asynchronous counters?

10 a. Design a synchronous counter for the sequence $0 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 6 \rightarrow 7 \rightarrow 0 \rightarrow 3$ using J-K flip-flop.
(10 Marks)
b. Design a counter using S-R flip-flop for the following given count $0 \rightarrow 4 \rightarrow 7 \rightarrow 2 \rightarrow 3 \rightarrow 0$.
(10 Marks)

